3.172 \(\int \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \, dx\)

Optimal. Leaf size=169 \[ \frac{\sqrt{a} (8 A+5 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{8 d}+\frac{a (8 A+5 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{8 d \sqrt{a \cos (c+d x)+a}}+\frac{C \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}{3 d}+\frac{a C \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{12 d \sqrt{a \cos (c+d x)+a}} \]

[Out]

(Sqrt[a]*(8*A + 5*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a*(8*A + 5*C)*Sqrt[Cos[
c + d*x]]*Sin[c + d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]) + (a*C*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(12*d*Sqrt[a +
a*Cos[c + d*x]]) + (C*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.386973, antiderivative size = 169, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.135, Rules used = {3046, 2981, 2770, 2774, 216} \[ \frac{\sqrt{a} (8 A+5 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{8 d}+\frac{a (8 A+5 C) \sin (c+d x) \sqrt{\cos (c+d x)}}{8 d \sqrt{a \cos (c+d x)+a}}+\frac{C \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}{3 d}+\frac{a C \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{12 d \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2),x]

[Out]

(Sqrt[a]*(8*A + 5*C)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a*(8*A + 5*C)*Sqrt[Cos[
c + d*x]]*Sin[c + d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]) + (a*C*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(12*d*Sqrt[a +
a*Cos[c + d*x]]) + (C*Cos[c + d*x]^(3/2)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n
+ 1))/(d*f*(m + n + 2)), x] + Dist[1/(b*d*(m + n + 2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*Simp
[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b
, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-
1)] && NeQ[m + n + 2, 0]

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2770

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(2*n*(b*c + a*d)
)/(b*(2*n + 1)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \, dx &=\frac{C \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{\int \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \left (\frac{3}{2} a (2 A+C)+\frac{1}{2} a C \cos (c+d x)\right ) \, dx}{3 a}\\ &=\frac{a C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt{a+a \cos (c+d x)}}+\frac{C \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{1}{8} (8 A+5 C) \int \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \, dx\\ &=\frac{a (8 A+5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{8 d \sqrt{a+a \cos (c+d x)}}+\frac{a C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt{a+a \cos (c+d x)}}+\frac{C \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{1}{16} (8 A+5 C) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{a (8 A+5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{8 d \sqrt{a+a \cos (c+d x)}}+\frac{a C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt{a+a \cos (c+d x)}}+\frac{C \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}-\frac{(8 A+5 C) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac{\sqrt{a} (8 A+5 C) \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{8 d}+\frac{a (8 A+5 C) \sqrt{\cos (c+d x)} \sin (c+d x)}{8 d \sqrt{a+a \cos (c+d x)}}+\frac{a C \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{12 d \sqrt{a+a \cos (c+d x)}}+\frac{C \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.489632, size = 112, normalized size = 0.66 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)} \left (3 \sqrt{2} (8 A+5 C) \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )+2 \sin \left (\frac{1}{2} (c+d x)\right ) \sqrt{\cos (c+d x)} (24 A+10 C \cos (c+d x)+4 C \cos (2 (c+d x))+19 C)\right )}{48 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2),x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(3*Sqrt[2]*(8*A + 5*C)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sqrt[
Cos[c + d*x]]*(24*A + 19*C + 10*C*Cos[c + d*x] + 4*C*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(48*d)

________________________________________________________________________________________

Maple [B]  time = 0.187, size = 362, normalized size = 2.1 \begin{align*} -{\frac{ \left ( -1+\cos \left ( dx+c \right ) \right ) ^{3}}{24\,d \left ( \sin \left ( dx+c \right ) \right ) ^{6}} \left ( 24\,A\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{5/2}+48\,A\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{5/2}+24\,A\sin \left ( dx+c \right ) \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{5/2}+8\,C\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{4}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+10\,C\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+15\,C\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+24\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) +15\,C \left ( \cos \left ( dx+c \right ) \right ) ^{2}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \right ) \sqrt{\cos \left ( dx+c \right ) }\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2),x)

[Out]

-1/24/d*(-1+cos(d*x+c))^3*(24*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+48*A*sin(d*x+c)*cos(
d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+24*A*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)+8*C*sin(d*x+c)*cos(
d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+10*C*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+15*C
*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+24*A*cos(d*x+c)^2*arctan(sin(d*x+c)*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)/cos(d*x+c))+15*C*cos(d*x+c)^2*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c
)))*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^6/(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)

________________________________________________________________________________________

Maxima [B]  time = 2.8723, size = 3663, normalized size = 21.67 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/96*(24*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) - 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1)))*sqrt(a) + sqrt(a)*(arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^
(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1
/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c
os(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1)
+ arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1)))*A + (4*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
+ 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(
3*d*x + 3*c))) + 1)^(3/4)*(cos(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arcta
n2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x + 3*c) - (cos(3*d*x + 3*c) - 1)*sin(3/2*arctan2(sin(2/
3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sq
rt(a) + 6*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*((sin(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c))) + 5*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*ar
ctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (cos(
2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 3*cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 4)
*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))) + 1)))*sqrt(a) + 15*sqrt(a)*(arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))
) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*
d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))
) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*
d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) + 1) - arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), co
s(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3
*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*
c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), co
s(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arct
an2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3
*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*
c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) - 1) - arctan2((cos(2/3*arctan2(sin(3*d*x +
3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*
d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
, cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3
*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + 1) + arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))
^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*
d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*c
os(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))) + 1)) - 1)))*C)/d

________________________________________________________________________________________

Fricas [A]  time = 2.36609, size = 360, normalized size = 2.13 \begin{align*} \frac{{\left (8 \, C \cos \left (d x + c\right )^{2} + 10 \, C \cos \left (d x + c\right ) + 24 \, A + 15 \, C\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 3 \,{\left ({\left (8 \, A + 5 \, C\right )} \cos \left (d x + c\right ) + 8 \, A + 5 \, C\right )} \sqrt{a} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right )}{24 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/24*((8*C*cos(d*x + c)^2 + 10*C*cos(d*x + c) + 24*A + 15*C)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d
*x + c) - 3*((8*A + 5*C)*cos(d*x + c) + 8*A + 5*C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/
(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c)), x)